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ABSTRACT The purpose of this paper was to investigate roles of altered DNA methylations in rheumatoid
arthritis (RA). To achieve this goal, firstly, DNA methylation data were recruited from the ArrayExpress database.
Secondly, differentially methylated genes (DMGs) across RA patients and normals were detected based on t-test.
Thirdly, hierarchical clustering analysis was performed to evaluate DMGs between RA patients and normal controls.
Ultimately, functional enrichment analyses were conducted on DMGs to investigate significant biological functions
in RA patients. A total of 45 DMGs (covering 50 CpGs) were obtained. Importantly, the DMGs could well classify
RA patients and controls (accuracy = 0.9942), with well feasibility and confidence. Besides, the researchers
identified 15 significant gene ontology (GO) terms and 10 significant pathways, respectively. In summary, the
DMGs and their functional gene sets, which might shed new lights on the molecular mechanism of RA and provide
potential biomarkers for prevention of this disease.
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INTRODUCTION

It has been demonstrated that epigenetic
mechanisms integrate genetic and environmen-
tal causes of diseases (Golla et al. 2017). Briefly,
epigenetic refers to modifications of DNA and
its packaging that alter the accessibility of DNA
to potentially regulate gene expression and cel-
lular function without changes to underlying
genomic sequences (King et al. 2016). Mean-
while, DNA methylation is the most studied epi-
genetic modification in human beings, which
represents the covalent attachment of a methyl
group to the 52  position of cytosine, typically
occurring in the context of cytosine-guanine di-
nucleotide (CpG) sites (Smith and Meissner
2013; Johnson et al. 2017). Furthermore, it has a
variety of crucial functions, including control of
gene expression, cellular differentiation, X-chro-
mosome inactivation and genomic imprinting

(Hermann et al. 2004). But changes in DNA me-
thylation are dynamic and it is still largely un-
known how they dictate spatial and temporal
gene expression programs (Smith and Meissner
2013). Thus, a good understanding of aberrant
DNA methylations in complicated diseases
might point a new direction for revealing their
pathological mechanisms.

Rheumatoid arthritis (RA) is a chronic inflam-
matory disease characterized by joint swelling,
joint tenderness, and destruction of synovial
joints, leading to severe disability and prema-
ture mortality (Aletaha et al. 2010). Most com-
monly involved are the small joints of the hands,
feet and cervical spine, but larger joints like the
shoulder and knee can also be involved (Walker
et al. 2014). However, the cause of RA is not
clear, and  it is believed to involve a combination
of genetic and environmental factors. Coinci-
dently, epigenome-wide association data impli-
cate DNA methylation as an intermediary of ge-
netic risk in RA patients (Liu et al. 2013). But the
comprehensive and systemic analyses of DNA
methylations in RA have not yet performed.

Objectives

Therefore, in the present study, abnormal
DNA methylations were revealed for RA based
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on a series of bioinformatics analyses. First of
all, differentially methylated genes (DMGs) be-
tween RA patients and normal controls were
detected from the DNA methylation data. Sub-
sequently, a hierarchical clustering analysis was
conducted on these DMGs to access the classi-
fication performance of them. Finally, functional
enrichment analyses were carried out to explore
significant gene sets of RA. These results might
provide evidence of the cumulative roles of epi-
genetic mechanisms in RA, and shed new lights
on RA early diagnosis and treatment.

METHODOLOGY

Preparing DNA Methylation Data

DNA methylation data for RA patients (E-
GEOD-42861) were downloaded from the public
ArrayExpress database (http://www.ebi.ac.uk/
arrayexpress/) using Illumina HumanMethyla-
tion450 BeadChip (HumanMethylation450_
15017482_v.1.1) on 354 anti-citrullinated protein
antibody associated RA cases and 335 controls.
There were a total of 485,577 CpGs in the raw
microarray dataset. Subsequently, these CpGs
were obeyed to a set of rigorous quality controls.
In brief, a probe would be removed if it satisfied
with one of the following condition: the distance
from CpG to single-nucleotide polymorphism
(SNP) < 2; the minimum allelic frequency <0.05;
and probes of cross-hybridising and on X and Y
chromosomes. As a result, 426,758 CpGs were
obtained for the subsequent analyses.

Identifying DMGs

Generally speaking, methylation at a CpG is
denoted as a methylation β-value, which is a
quantitative measure of methylation for each
CpG site with range between 0 (no methylation)
to 1 (completely methylated) (Wu et al. 2016a).
Furthermore, the retained DNA methylation data
were normalized according to the  β-mixture quan-
tile normalization method, which improves the
robustness of the normalization procedure and
reduces the technical variation and bias (Te-
schendorff et al. 2013). In this work, all CpGs for
which one or more of the 689 samples displayed
detection P values > 0.05 (indicating an unreli-
able site) or presented with missing  β-values
and the absolute difference of average  β-value
across RA patients and normal controls < 0.05

were excluded. Initial differential methylated
CpGs between the two specific groups were de-
termined through the t-test (Baldi and Long
2001) and the cut-off was set as P < 0.05.

Subsequently, the refinement of initial dif-
ferential methylated CpGs was further filtering
steps were applied to facilitate a more stringent
analysis. For purpose of reducing the number of
non-variable CpGs and improve the statistical
power of subsequent analyses, the sits with β-
values > 0.8 and < 0.2 were eliminated in all 689
samples. Moreover, CpG with the absolute dif-
ference of average  β-value across RA patients
and normal controls <0.1 was deleted. Conse-
quently, differential methylated CpGs between
RA patients and normal controls were investi-
gated. The genes covered by differential methy-
lated CpGs were considered to DMGs for RA
patients.

Hierarchical Clustering Analysis

Hierarchical clustering analysis was conduct-
ed using the Cluster 3.0 software (Hoon 2002) to
access DMGs classified performance between 354
RA cases and 335 controls. Ideally, the 689 sam-
ples should be classified into two major clusters:
RA group and control group. The present study
tested the method by measuring the percentage
of test samples that could be correctly classified.
Supposing that RA belonged to positive sam-
ples, and normal controls attributed to negative
samples, accuracy was counted as followed for-
mula (Mohammadi et al. 2011):

Where TP (true positive) represented the
number of positive samples correctly predicted
as positive; TN (true negative) stood for the
number of negative samples correctly predicted
as negative; FP (false positive) was the number
of negative samples incorrectly predicted as
positive and FN (false negative) referred to the
number of positive samples incorrectly predict-
ed as negative. Of note, a high accuracy indicat-
ed a good classification performance, and fur-
ther validated the confidence of DMGs and the
feasibility of the presented method.

Gene Ontology (GO) Enrichment Analysis

GO analysis has been widely utilized as func-
tional enrichment researches for large-scale

Accuracy = TN+TP
TN+TP+FN+FP
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genes (Ashburner et al. 2000). In the reseachers’
study, the researchers implemented GO functional
enrichment analysis for differentially methylat-
ed genes using Database for Annotation, Visu-
alization and Integrated Discovery (DAVID, ht-
tps://david.ncifcrf.gov) which is a soft tool pro-
viding a comprehensive set of functional anno-
tation for researchers to understand the biolog-
ical meaning behind a large number of genes
(Huang da et al. 2009). Specifically, Fisher’s ex-
act test was utilized to classify the GO category.
Then, P values were corrected using false dis-
covery rate (FDR) using Benjamini and Hoch-
berg (BH) method (Benjamini et al. 2001). Func-
tional terms with P < 0.05 were considered sta-
tistically significant.

Pathway Enrichment Analysis

Kyoto Encyclopedia of Genes and Genomes
(KEGG) database is a collection of manually
drawn pathways mapped for metabolism, genet-
ic information processing, environmental infor-
mation processing, various other cellular pro-
cesses and diseases (Kanehisa 2000). Hence,
the KEGG pathway enrichment analysis was
performed on DMGs based on the DAVID. Par-
ticularly, Fisher’s exact test was utilized to eval-
uate the significance of pathways (Routledge
2005). The P values were corrected by FDR in
BH method (Benjamini et al. 2001). Pathways
with P < 0.05 were considered to be significant
between RA patients and control samples.

RESULTS

DMGs

Following quality control and normalization
to remove probes with SNP-CpG distance not
more than 2, on X and Y chromosomes, with
MAF < 0.05, and of cross-hybridising, a total of
426,758 methylated CpGs remained in the final
dataset of 689 samples. A volcano plot exhibit-
ing distribution of the 426,758 analyzed methy-
lated CpGs was produced, as described in Fig-
ure 1. Among these 426,758 methylated CpGs,
5,422 CpGs (representing 3320 genes) were ini-
tial differentially methylated, when the absolute
difference value of mean β-value between RA
and normal groups was higher than 0.05 and P
value was less than 0.05. Among 5,422 CpGs,
4,348 CpGs were hypermethylated, whereas 1,074

CpGs were hypomethylated in RA patients com-
pared with normal controls.

Subsequently, these initially differentially
methylated CpGs were subjected to further fil-
tering. The results showed that 5,421 CpGs (cov-
ering 3,319 genes) were detected after removing
CpGs with β-values > 0.8 and < 0.2 were elimi-
nated. Further, based on the cut-off threshold of
> t0.1 average β-values difference across the
two specific groups, total 50 differentially meth-
ylated CpGs were left, which referred to 45 DMGs
(Table 1). ERCC3 (P = 4.48E-59), TNFRSF9 (P =
5.22E-57), HRH4 (P = 1.52E-56), PVT1 (P = 9.40E-
56), and FOXP1 (P = 2.96E-55) were the most
significant five DMGs for RA patients.

Assessment of DMGs

To assess the classification performance for
45 DMGs and validate the feasibility of the
present method, a hierarchical clustering analy-
sis was conducted. In consequent, 353 RA sam-
ples and 332 normal controls were correctly dis-
tinct, whereas 1 RA samples and 3 normal sam-
ples were wrongly attributed to normal samples.
Thus, the accuracy for these DMGs was 0.9942,
which suggested that the DMGs had a good
classification performance across RA patients
and normal controls and even enhanced the sta-
bility and confidence of the present study.

Fig. 1. Volcano plot exhibiting methylation data of
rheumatoid arthritis (RA). X axis stood for the mean
methylation differences between RA and normal.
Y axis represented the log transformed P values
Source: Author
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GO Enrichment Analysis

In an attempt to better reveal the potential
biological functions of the DMGs, all these genes
were annotated using GO annotation based on
DAVID software. GO catergories with P <  0.05
were regarded as significant enriched. The result
was illustrated in Figure 2, the researchers  found
that 15 significant GO terms were gained for RA
patients, especially for regulation of B cell apop-
totic process, lymphocyte costimulation, and reg-
ulation of leukocyte apoptotic process. Interest-
ingly, among 15 significant GO terms, 3 were re-
lated to T cell, 3 were attributed to leukocyte, and
4 GO terms were correlated to lymphocyte.

Pathway Enrichment Analysis

Pathway enrichment analysis of all DMGs was
conducted based on the KEGG automatic annota-
tion server. Based on P < 0.05, DMGs were remark-
ably enriched in 10 KEGG pathways including Cell
adhesion molecules (CAMs) (P=1.71E-03), Intesti-
nal immune network for IgA production (P = 2.56E-
03) and Asthma (P = 2.72E-03). The specific enrich-
ment results were shown in Table 2.

DISCUSSION

DNA methylation, one of the most signifi-
cant mechanisms involved in microRNA expres-

 Table 1: Differentially methylated genes (DMGs)

Rank DMG     P value    Rank   DMG    P value

1 ERCC3 4.48E-59 24 VCL 5.46E-47
2 TNFRSF9 5.22E-57 25 MYEOV 6.56E-47
3 HRH4 1.52E-56 26 CSNK1D 1.12E-46
4 PVT1 9.40E-56 27 ZFP36L1 1.21E-46
5 FOXP1 2.96E-55 28 WDR45B 1.59E-46
6 ZGPAT 5.20E-54 29 SORCS2 1.28E-42
7 RCAN3 2.91E-53 30 RUNX3 8.15E-40
8 IQCB1 4.53E-53 31 ATXN7 1.55E-38
9 SPTBN1 6.21E-53 32 TCF12 7.88E-28
10 PYURF 2.67E-52 33 FYCO1 1.91E-21
11 WDR49 2.71E-52 34 WDR20 2.85E-20
12 VRK2 1.78E-51 35 PDCD1 6.33E-14
13 GMDS 5.64E-51 36 CD1C 6.62E-14
14 LOC256880 6.33E-51 37 C6orf10 1.06E-13
15 PTEN 2.50E-50 38 MRGPRG-AS1 3.22E-13
16 DOCK2 3.39E-50 39 TMEM198 9.26E-13
17 TMCO3 7.56E-50 40 HLA-DQB1 2.85E-12
18 TRIM27 2.98E-49 41 MAGI2-AS3 8.17E-12
19 DRGX 3.32E-49 42 HLA-DRB6 2.19E-10
20 LINC00520 3.42E-49 43 DNAJB6 3.47E-10
21 RAD51B 5.56E-49 44 ASCL2 2.48E-09
22 FAM120B 2.23E-48 45 HLA-DRB5 7.44E-08
23 ADAMTS14 2.28E-48 46

Table 2: Significant KEGG pathways with P < 0.05

ID Pathway                    P value

PATH:hsa04514 Cell adhesion molecules (CAMs) 1.71E-03
PATH:hsa04672 Intestinal immune network for IgA production 2.56E-03
PATH:hsa05310 Asthma 2.72E-03
PATH:hsa05320 Autoimmune thyroid disease 3.13E-03
PATH:hsa05330 Allograft rejection 3.43E-03
PATH:hsa05332 Graft-versus-host disease 4.07E-03
PATH:hsa05416 Viral myocarditis 4.94E-03
PATH:hsa04940 Type I diabetes mellitus 5.50E-03
PATH:hsa05150 Staphylococcus aureus infection 6.09E-03
PATH:hsa05321 Inflammatiory bowel disease (IBD) 7.58E-03
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sion regulation (Nardone et al. 2016), gene si-
lencing (Wu et al. 2016), and alternative gene
splicing (Flores et al. 2012). Because DNA meth-
ylation is stable and easily detected qualitative-
ly or quantitatively, it has been taken as the most
promising diagnostic marker for the early detec-
tion of disease (Zhao et al. 2014). However, its
dynamic patterns have not been analyzed at the
genome scale in human pre-implantation embry-
os due to technical difficulties and the scarcity
of required materials (Guo et al. 2014). Here
pathogenesis in the development of RA was
analyzed by bioinformatics systematically, in-
cluding detection of DMGs, validation of DMGs
and functional analyses for DMGs. On the basis
of these results, potential mechanisms of RA
were revealed, which might shed new lights on
into OS diagnosis and therapy.

Based on the pretreated DNA methylation
data, total 50 differentially methylated CpGs cov-
ering 45 DMGs were detected utilizing the t-test.
Specifically, ERCC3, TNFRSF9 and HRH4 were
more significant for RA patients compared with
normal controls than the others. ERCC3 (exci-
sion repair cross-complementation excision re-
pair 3), a subunit of basal transcription factor 2,
encodes an ATP-dependent DNA helicase that
functions in nucleotide excision repair (Ma et al.
2016). It showed a small but statistically signifi-
cant increase of promoter DNA methylation in
the exposed group compared with the unexposed

group (Xing et al. 2013). Besides, alternative
splicing of ERCC3 results in multiple transcript
variants, and the dys-regulations even leading
to disease of human, such as RA. TNFRSF9 (Tu-
mor necrosis factor receptor subfamily 9) is a
member of the TNF-receptor superfamily which
contributes to the clonal expansion, survival,
and development of T cells, and can also induc-
es proliferation in peripheral monocytes, enhanc-
es T cell apoptosis induced by TCR/CD3 trig-
gered activation, and regulates CD28 co-stimu-
lation to promote Th1 cell responses (Blank et
al. 2015). Coincidently, we explored 3 significant
GO terms that related to T cell, which confirmed
with it. Moreover, TNFRSF9 was reported to play
a potentially important role in immune function
(Eckstrum and Bany 2011). It had been demon-
strated that DNA methylation could be identi-
fied as a potential biomarker response to anti-
TNF therapies in RA (Webster et al. 2014).

Significantly, GO results of DMGs indicated
that regulation of B cell apoptotic process, lym-
phocyte co-stimulation and regulation of leuko-
cyte apoptotic process were more differentially
expressed terms for RA patients comparing to
normal controls. Regulation of B cell apoptotic
process includes any process that modulates
the frequency, rate, or extent of B cell apoptotic
process (Xu et al. 2017). In addition, Cell adhe-
sion molecules (CAMs) and Intestinal immune
network for IgA production were the two impor-
tant pathways for RA patients.

Fig. 2. Significant GO terms with P < 0.05 for rheumatoid arthritis (RA) patients
Source: Author
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CONCLUSION

In summary, the researchers have revealed
DMGs and their functional gene sets for RA
patients, which might shed new lights on un-
covering the molecular mechanism of RA and
provide potential biomarkers for prevention and
treatment of this disease.

RECOMMENDATIONS

Whereas, how the DMGs interacted with
each other is still unclear, and the validations
should be carried out in future.
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